Two-Stage Multi-Scale Fault Diagnosis Method for Rolling Bearings with Imbalanced Data

نویسندگان

چکیده

Intelligent bearing fault diagnosis is a necessary approach to ensure the stable operation of rotating machinery. However, it usually difficult collect data under actual working conditions, leading serious imbalance in training datasets, thus reducing effectiveness data-driven diagnostic methods. During stage augmentation, multi-scale progressive generative adversarial network (MS-PGAN) used learn distribution mapping relationship from normal samples with transfer learning, which stably generates at different scales for dataset augmentation through training. diagnosis, MACNN-BiLSTM method proposed, based on attention fusion mechanism that can adaptively fuse local frequency features and global timing extracted input signals multiple achieve diagnosis. Using UConn CWRU proposed achieves higher accuracy than achieved by several comparative methods Experimental results demonstrate generate high-quality spectrum extract features, better classification accuracy, robustness, generalization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault Diagnosis of Rolling Element Bearings with a Spectrum Searching Method

Rolling element bearing faults in rotating systems are observed as impulses in the vibration signals, which are usually buried in noise. In order to effectively detect faults in bearings, a novel spectrum searching method is proposed in this paper. The structural information of the spectrum (SIOS) on a predefined frequency grid is constructed through a searching algorithm, such that the harmoni...

متن کامل

Fault Diagnosis of Rolling Bearings Based on SURF algorithm

This paper proposed a new method for fault diagnosis of rolling bearings based on SURF (Speeded-Up Robust Features) algorithm, where two-dimension signal is used. Different from other classical 1-d signal processed methods, the proposed method transforms the 1-dimensional vibration signals into images, then image processed methods are utilized to analyze the image signal so as to reach the goal...

متن کامل

An Approach to Fault Diagnosis of Rolling Bearings

The present paper aims to demonstrate why usually when theoretical mathematical models are used to compute the frequencies corresponding to a faulty rolling bearing a deviation is obtained between the computed values and the real frequencies emitted by such a device. A laboratory rolling bearing test ring has been developed to perform the current studies. From the obtained results we highlight ...

متن کامل

Fault Diagnosis of Rolling Bearings Based on EWT and KDEC

Abstract: This study proposes a novel fault diagnosis method that is based on empirical wavelet transform (EWT) and kernel density estimation classifier (KDEC), which can well diagnose fault type of the rolling element bearings. With the proposed fault diagnosis method, the vibration signal of rolling element bearing was firstly decomposed into a series of F modes by EWT, and the root mean squa...

متن کامل

Fault Diagnosis Method Based on Kurtosis Wave and Information Divergence for Rolling Element Bearings

Fault diagnosis depends largely on feature analysis of vibration signals. However, feature extraction for fault diagnosis is difficult because the vibration signals often contain a strong noise component. Noises stronger than the actual fault signal may interfere with diagnosis and ultimately cause misdiagnosis. In order to extract the feature from a fault signal highly contaminated by the nois...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machines

سال: 2022

ISSN: ['2075-1702']

DOI: https://doi.org/10.3390/machines10050336